Ingia -

PEPR NumPEx and Cloud: 7-year Perspectives of Academic Research on Large-Scale Data Management

François Tessier - Team KerData@INRIA - Rennes, France

Teratec Forum - 06/2023

PEPRs

PEPR: Priority Research Programs and Equipment

What are PEPRs?

- Action of the "France 2030" plan dedicated to the financing of national fundamental research
- **Objective:** to fund strategic research areas
 - Material science, climate, robotics, biology, agronomics, ...
- 3B€ released
 - \circ 1B€ dedicated to exploratory PEPRs
 - Selection by call for programs
 - International evaluation
 - \circ 2B€ dedicated to strategic PEPRs
 - Support ongoing research

PEPR: Priority Research Programs and Equipment

What are PEPRs?

- Action of the "France 2030" plan dedicated to the financing of national fundamental research
- **Objective:** to fund strategic research areas
 - Material science, climate, robotics, biology, agronomics, ...
- 3B€ released
 - \circ 1B€ dedicated to exploratory PEPRs
 - Selection by call for programs
 - International evaluation
 - 2B€ dedicated to strategic PEPRs **→**
 - Support ongoing research

RAPPROCHONS LE

NumPEx

Cloud

FRANCE

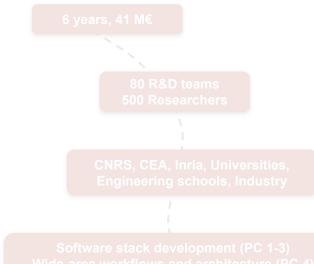
NumPEx Program

- **Goal:** Co-design the <u>exascale</u> software stack and prepare applications for the exascale era
- Co-directors: Dr. J. Bodin (CEA), Pr. M. Dayade (CRNS), Dr. J-Y Berthou (Inria)

NumPEx Program

- **Goal:** Co-design the <u>exascale</u> software stack and prepare applications for the exascale era
- Co-directors: Dr. J. Bodin (CEA), Pr. M. Dayade (CRNS), Dr. J-Y Berthou (Inria)
- 5 Projects:
 - ExaMa: Methods and Algorithms
 - Pr. C. Prudhomme, Univ. Strasbourg
 - ExaSoft: HPC software and tools

Pr. R. Namyst, Inria/Univ. Bordeaux


• **ExaDoST:** Data-oriented software and tools

Dr. G. Antoniu, Inria

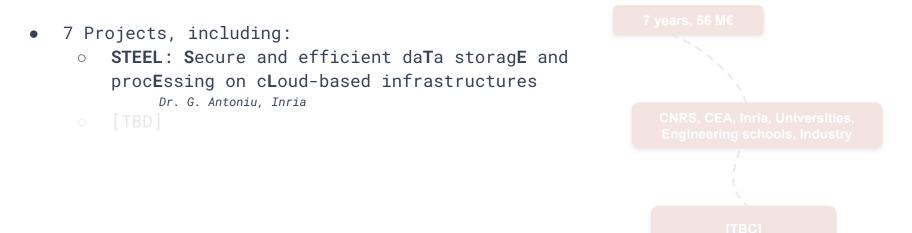
 ExaAtoW: Architectures and Tools for Large-Scale Workflows

Pr. F. Bodin, Univ. Rennes

ExaDIP: Development and Integration Project
Dr. J-P Vilotte, CNRS

Cloud Program

- **Goal:** Support the development of software and hardware layers that will help design tomorrow's highly distributed, secure infrastructures with the smallest possible <u>energy footprint</u>.
- **Co-directors:** Frédéric Deprez (Inria), Adrien Lèbre (IMT Atlantique)


0

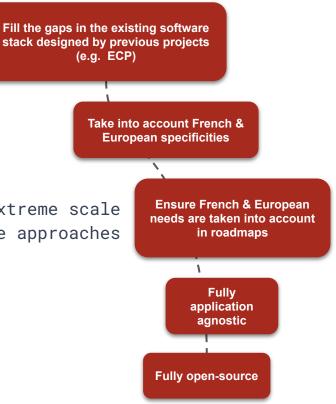
Ο

[TBD]

Cloud Program

- **Goal:** Support the development of software and hardware layers that will help design tomorrow's <u>highly distributed</u>, <u>secure</u> infrastructures with the smallest possible <u>energy footprint</u>.
- Co-directors: Frédéric Deprez (Inria), Adrien Lèbre (IMT Atlantique)

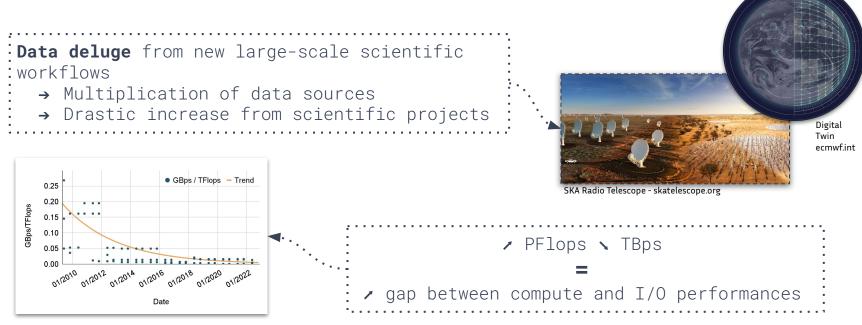
Our Ambition

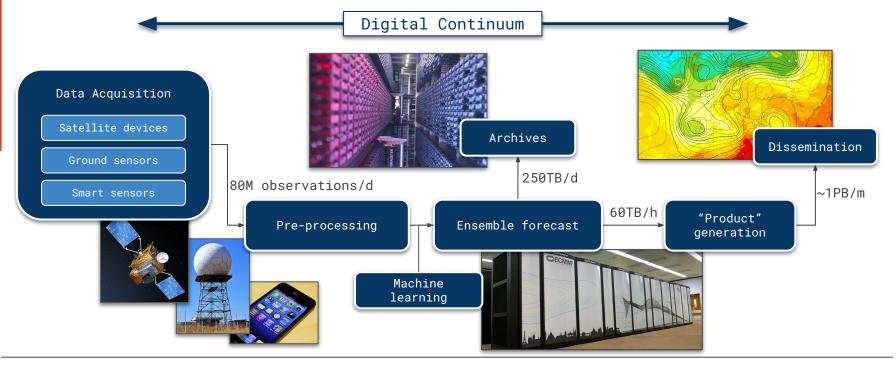

Approach:

- **Research** on data-oriented tools for HPC
- That leads to transverse, **re-usable tools**
- Usable in production at exascale

ExaDoST and STEEL will produce:

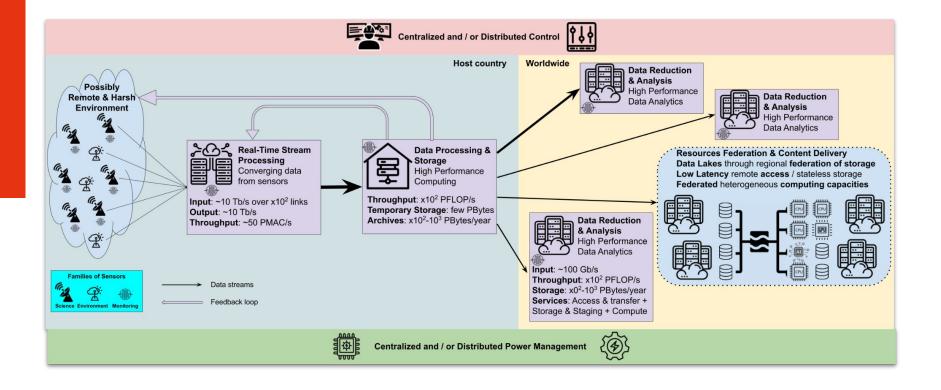
- New approaches to handle the data challenge at extreme scale
- Transverse libraries & tools that implement these approaches
- Validated on illustrators at full scale
 - Small/Mid-scale: Teralab, Grid'5000, SLICES
 - Large-scale: **GENCI**



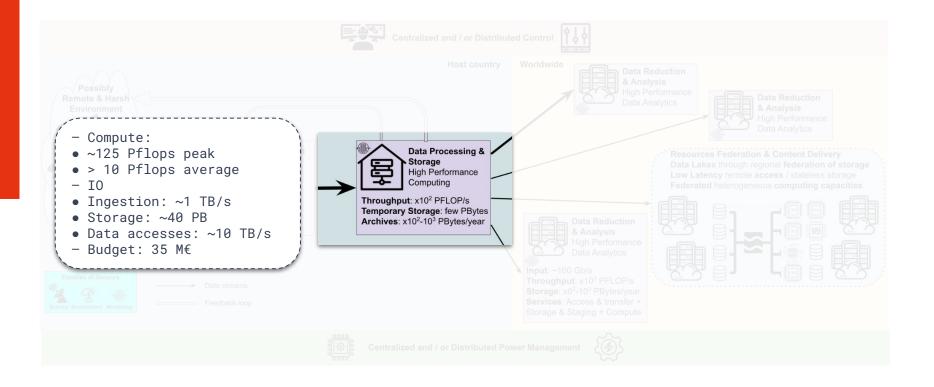

Scientific Context

Use-case: Digital Twin of the Earth System for Weather Forecast

Sources : ETP4HPC's SRA 4 - Strategic Research Agenda for High-Performance Computing in Europe (2020) ECMWF - European Center for Medium-range Weather Forecast Maestro H2020 Project

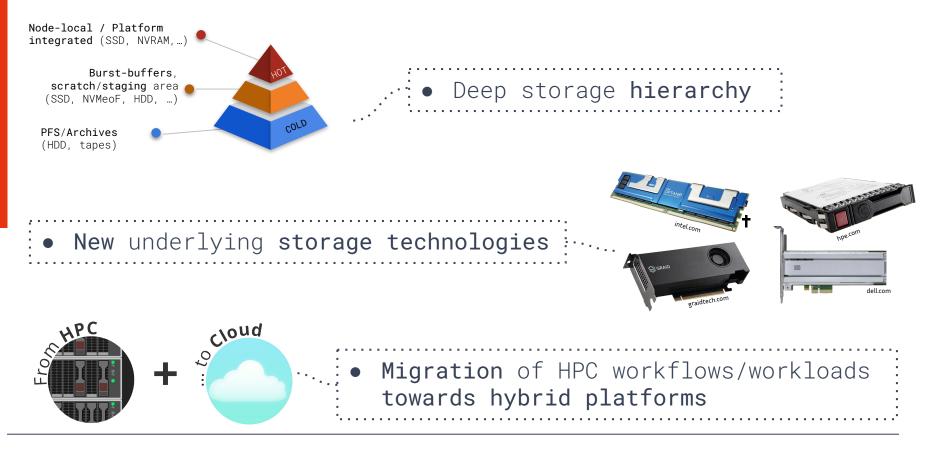

• Square Kilometer Array (SKA): Largest radio telescope in the world.

- \circ €1.3 B for construction, €0.7 B for the first 10 years of operation
- More than 130k antennas (Australia) and ~200 dishes (South Africa)
- \circ 710 PB of science data delivered to users
- 8 years to construct
- \circ 16 countries
- Operational in 2030



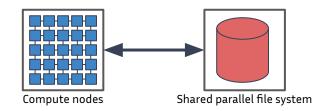
Innin .

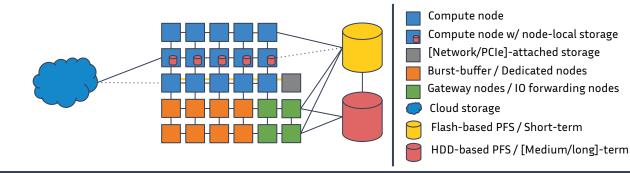
Sources : SKAO website



Ínría_

Ínnía


Current trends



Finding balance between performance and complexity

We went from traditional storage systems...

...to more complex and hybrid resources:

Complexity, underutilization of resources, performance left on the table

Application Requirements

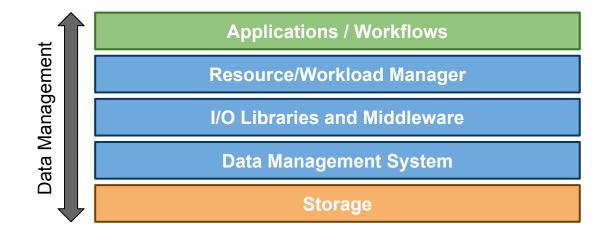
- Scale up modern I/O and data storage methods and tools
- **Support** the I/O and storage requirements of complex simulation/analytics/AI workflows running on hybrid HPC/cloud/edge systems
- Develop and integrate new output formats for checkpoint/restart and for scientific analysis, (e.g., based on the LightAMR standard)
- Exploit **emerging technologies** for efficient, fault-tolerant storage
- Offer efficient data storage and processing solutions on hybrid, heterogeneous infrastructures within the digital edge-cloud-supercomputer continuum
- Enabling confidential storage on clouds

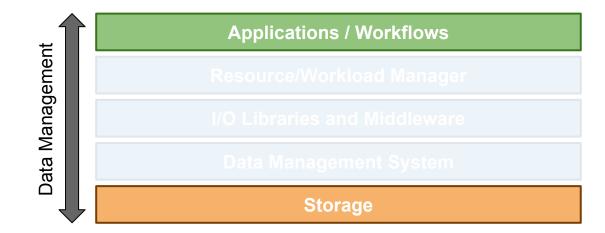
Application Requirements

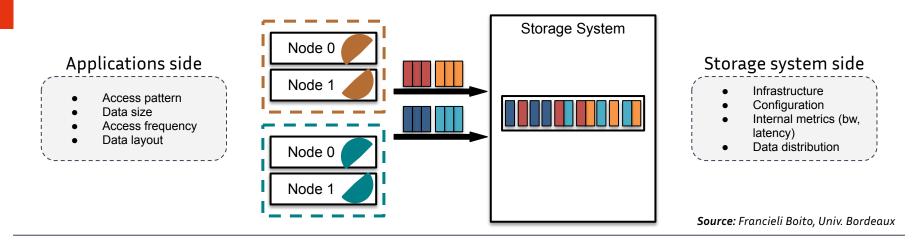
- Scale up modern I/O and data storage methods and tools
- **Support** the I/O and storage requirements of complex simulation/analytics/AI workflows running on hybrid HPC/cloud/edge systems
- Develop and integrate new output formats for checkpoint/restart and for scientific analysis, (e.g., based on the LightAMR standard)

• Exploit emerging technologies for efficient, fault-tolerant storage

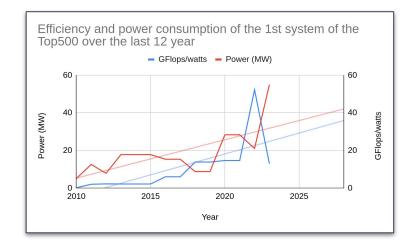
- Offer efficient data storage and processing solutions on hybrid, heterogeneous infrastructures within the digital edge-cloud-supercomputer continuum
- Enabling confidential storage on clouds


NumPEx


Identified Research Areas: focus on I/O challenges

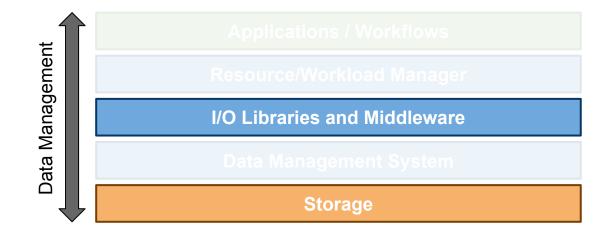


A deep understanding of the I/O behavior of applications and storage systems is essential for developing efficient optimizations.



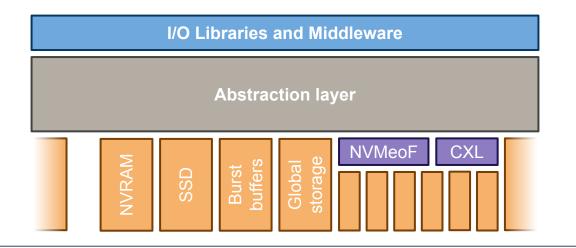
- Fine-grained benchmarking of applications' I/O behavior and testbeds' underlying storage systems
- Increase knowledge of application access patterns and storage systems performance
 - Production conditions
 - Monitoring of I/O (application and systems)
 - Benchmarking suite

- Strategies and metrics for application characterization
 - \circ $\,$ Metrics collected from application execution $\,$
 - Predict how **performance** and **energy consumption** will be affected
 - \circ $\,$ Classification of applications based on their I/O behavior $\,$
 - Create a matching between I/O behavior and optimization techniques

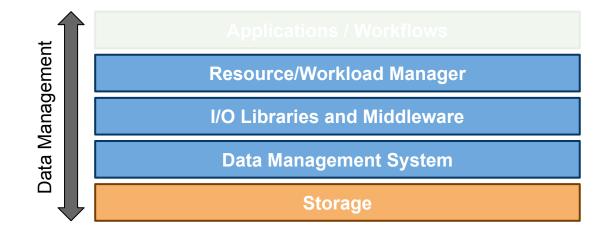


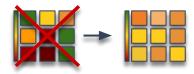
Leverage modern storage architectures

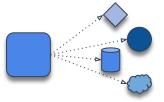
Achieving code and performance portability across a broad variety of memory and storage tiers requires a certain level of abstraction.


Leverage modern storage architectures

Leverage modern storage architectures


- Leverage modern storage architectures in a scalable way
 - \circ $\,$ Evaluation of existing I/O libraries and middleware $\,$
 - Support for **new intermediate storage tiers**
 - Unify the **memory/storage continuum**
 - Use-case: persistent, reliable storage of application working data, traditionally stored in DRAM

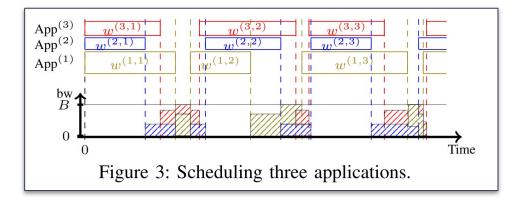

Taking full advantage of all available resources is critical in a context where storage is central.



- Arbitrate storage resources between concurrent workloads
 - \circ $\,$ Scheduling of storage resources on HPC systems $\,$
 - Transpose compute resource management knowledge to storage resources
 - StorAlloc: a simulator of a storage-aware job scheduler for HPC systems [1]
 - Contention-aware provisioning of intermediate storage tiers
 - Sizing of storage infrastructures

Make **efficient** and **fair** use of all storage resources

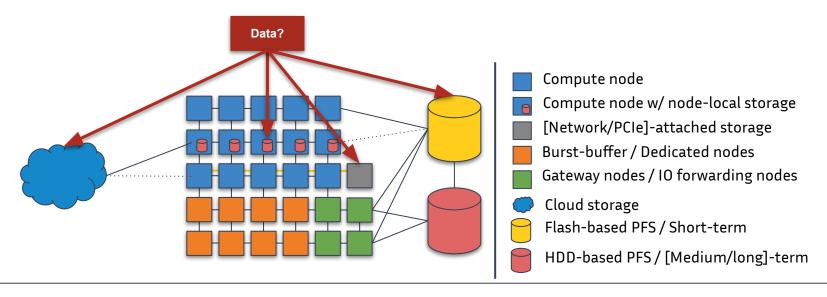
Transparently allocate storage for users and applications



Deal with heterogeneity of hardware resources

Ínría_

[1] Julien Monniot, François Tessier, Matthieu Robert, Gabriel Antoniu. StorAlloc: A Simulator for Job Scheduling on Heterogeneous Storage Resources. HeteroPar 2022, Aug 2022, Glasgow, United Kingdom.


- Arbitrate storage resources between concurrent workloads
 - I/O scheduling in a concurrent environment
 - Shared storage resources -> impact on performance and variability
 - I/O scheduling algorithms at the I/O library/middleware level
 - Manage concurrency to increase the bandwidth

Source: Guillaume Pallez, Inria

- Data placement on multi-tier storage infrastructures
 - \circ $\,$ For a single application or a workflow, where to place data such as:
 - Requirements are fulfilled (persistency, capacity, scope)
 - I/O performance maximized
 - Waste of resources minimized

Conclusion

- Be ready for Extreme Scale !
- Two **ambitious** projects
 - An important part of the HPC community (in)directly involved...
 - o … including industry!
- Choices made about the topics to cover
- Pragmatic approach for I/O and storage
 - \circ (Almost) only what is <code>realistic</code>
 - Following the data path, from applications to disks

