

31 MAY & 1st JUNE 2023 • Parc Floral, Paris

FLATSIM : radar data providing precise measurement deformation at continental scale

Philippe DURANDRaphaël GRANDINCNES - ToulouseIPGP - Paris

- **Sentinel-1 : system overview**
- **Interferometry : very quick introduction (in two slides !)**
- **FLATSIM** service :
- introduction, products, information, data access, computing
- computational challenges, scientific projects and some results

Sentinel-1 Overview

European Union program

Sentinel-1:

radar imaging for ocean, land and emergency

Mission based on 4 similar satellites

S1A (data since October 2014) S1B (September 2016 - December 2021) S1C and S1D to come, hopefully beyond 2030

Main characteristics:

C-band imaging **Radar** instrument ($\lambda = 5,6cm$) Instrument duty cycle of 25 min/orbit in HR modes Near polar sun synchronized orbit at 693 km (ascending node at 18:00LT) **7 years lifetime, consumables for 12 years** Goal of **6-days repeat cycle (with 2** operating **satellites)**

Systematic data processing

open & free data access (for the 1rst time)

Instrument operations based

on a predefined observation scenario

Sentinel-1 Constellation Observation Scenario: Mode - Polarisation - Observation Geometry

validity start: 11/2021

Note: Seasonal campaigns not represented Note: Wave mode systematically operated over open oceans

Sentinel-1 Constellation Observation Scenario: Repeat & Coverage Frequency

validity start: 11/2021

Note: Seasonal campaigns not represented Note: Wave mode systematically operated over open oceans not represented

Radar interferometry

¢cnes

ŏ

VS

Interferometry

© cnes

FLATSIM : ForM@Ter LArge-scale multi-Temporal Sentinel-1 InterferoMetry)

Objective : massive processing of interferometric data over full **Sentinel-1 archive** to deduce **velocity maps of displacements**

Earth Surface deformation on a continental scale Surveillance in space and time of critical regions (Large active faults, magmatic systems, landslides, lithospheric deformation at large scale)

Based on NSBAS : processing chain maintained by ISTerre lab in Grenoble.

Principle of integration :

- Best integration possible to **increase scalability** of the chain **within CNES architecture** (HPC, PEPS, ...).
- Processing of simultaneous tracks possible.

Gathering Sentinel1 IW products :

- Along track : up to 5 consecutive frames (segments > 800km long)
- Mosaicking of the 3 subswaths (with inter swath continuity 250km width)
- At different resolutions (according to areas and level of products)

FLATSIM : Distributed Products

© cnes

FLATSIM on the WEB

https://doi.org/10.24400/253171/flatsim2020

Full information

https://www.poleterresolide.fr/projets/en-cours/flatsim/

Article FLATSIM: the ForM@Ter LArge-scale multi-Temporal Sentinel-1 InterferoMetry service

Franck Thollard ¹, Dominique Clesse ², Marie-Pierre Doin ¹, Joelle Donadieu ³, Philippe Durand ³, Raphaël Grandin ⁴, Cécile Lasserre ⁵, Christophe Laurent ¹, Emilie Deschamps-Ostanciaux ⁴, Erwan Pathier ¹, Elisabeth Pointal ⁴, Catherine Proy ³, and Bernard Specht ³

- ¹ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France
- ² Capgemini; https://www.capgemini.com/
- ³ CNES: Centre National d'Études Spatiales, Toulouse, France
- ⁴ Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
- ⁵ Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
- * Franck Thollard franck.thollard@univ-grenoble-alpes.fr; Tel.: +33 4 76 63 52 07 (F.T.)

Version August 13, 2021 submitted to Remote Sens.

Abstract: The purpose of the ForM@Ter LArge-scale multi-TemporalSentinel-1 InterferoMetry service (FLATSIM) is the massive processing of Sentinel-1 data using multi-temporal Interferometric Synthetic Aperture Radar (InSAR) over large areas, i.e. greater than 250,000 km². It provides the French ForM@ter scientific community with automatically processed products using a state of the art processing chain based on a Small BAseline Subset approach, namely the New Small BASeline (NSBAS). The service results from a collaboration between the scientific team that develops and maintains the NSBAS processing chain and the French Spatial Agency (CNES) that mirrors the Sentinel-1 data. The proximity to Sentinel-1 data, the NSBAS workflow and the specific optimizations to make NSBAS processing massively parallel for the CNES High Performance Computing infrastructure ensures the efficiency of the chain, especially in terms of Input/Output, which is the key for the success of such a service. The FLATSIM service is made of a production module, a delivery module and a user access module. Products include interferograms, surface Line Of Sight velocity, phase delay time series and auxiliary data. Numerous quality indicators are provided for an in-depth analysis of the quality and limits of the results. The first national call in 2020 for region of interest ended up with 8 regions spread over the world with scientific interests including seismology, tectonics, volcano-tectonics and hydrological cycle. To illustrate the FLATSIM capabilities, an analysis is shown here on two processed regions, the Afar region in Ethiopa, and the eastern border of the Tibetan Plateau.

Keywords: InSAR; Sentinel-1; automatic processing; time series analysis; deformation monitoring; tectonics; subsidence

Full information on delivered products

FLATSIM

Search docs

Products delivery for FLATSIM

 Product description (general for NSBAS, including GDM-SAR and FLATSIM)

- Product names and acronyms:
- How are the products generated?

Metadata Definitions

Interferogram based products

Auxiliary Data

Time Series

Auxiliary Files

CONTRIBUTOR:

Institutions

Contributors from CNES

Academic contributors

https://formater.pages.in2p3.fr/flatsim/pres_flatsim.html

Product description (general for NSBAS, including GDM-SAR and FLATSIM)

Product names and acronyms:

In the column Radar the product is in radar geometry, in column EPSG4326 the product is geocoded.

Name	Acronym	Radar	EPSG4326	Description
WRAPPED_INTERFEROGRAM	InW	InW_radar	InW_geo	Wrapped Diffe
FILTERED_WRAPPED_INTERFEROGRAM	InWF	InWF_radar	InWF_geo	Filtered Wrapp
ATMOSPHERIC_PHASE_SCREEN	APS	APS_radar	APS_geo	Interferogram
SPATIAL_COHERENCE	Coh	Coh_radar	Coh_geo	Spatial cohere
UNWRAPPED_INTERFEROGRAM	InU	InU_radar	InU_geo	Unwrapped Di

Products from the time-serie package

Name	Acronym	Radar	EPSG4326	Description
LOS_DISPLACEMENT_TIMESERIES	DTs_LOS	DTs_radar	DTs_geo	TIME SERIES
MEAN_LOC_VELOCITY	MV-LOS	MV-LOS_radar	MV-LOS_geo	Mean LOS vel
NETWORK_MISCLOSURE	Net	Net_radar	Net_geo	Network misc
STACK_INTERFEROGRAMS	Stk-In	Stk-In_list_InW	Stk-In_list_InU	Stack of coreg

Products from the auxiliary data package.

Name	Acronym	Radar	EPSG4326
LOOKUP_TABLE_RADAR2GROUND_COORDINATES	LuT	LuT_radar	LuT_geo
MAP_OF_LOS_VECTOR	CosNEU	CosNEU_radar	CosNEU_geo
DEM	DEM	DEM_radar	
TEMPORAL_COHERENCE	TCoh	TCoh_radar	TCoh_geo
4			

DTs_geo

Product Description

This product is in ground geometry. The number of looks of the product before projection in ground geometry is provided in metadata and corresponds to Rlooks_unw*nsamp (two parameters from the processing file nsbas.proc and from the lect.in file, respectively, nsamp=1 by default in FLATSIM or GDM-SAR). The ground spacing in degree is set such that it is slightly less than the pixel size of the corresponding product in radar coordinates.

Composition of the bands is described in DTs page.

(Note :result computed in the task mk_TCoh_geo_rint in nsb_populate_product.sh,)

Example

Png file with a legend file:

A metadata file can be downloaded here: 🚣 DTs_geo.meta

Products from the interferogram package:

12

© cnes

Access products via the ForM@Ter website after validation by the InSAR experts of the FLATSIM team

Data availability is temporarily limited depending on projects : from few months to 3 years maximum. But some products may be distributed after discussion and agreement with the project team.

FLATSIM architecture

SOFT and HARD~ware

Specific challenge of interferometry processing

FLATSIM : an example of computing over Turkey

FLATSIM : 1rst and 2nd announcement

Selected Areas

Location	Themes 👸	Leaders	Products
Announcement of Opportunity 2020 (data Oc	tober 2014 - end of April 2021) 🏹		
Afar	Landslides, Tectonics, Volcanology	R. Grandin (IPGP)	Access to products
Central Andes, Peru-Chile	Landslides, Tectonics, Volcanology	M. Chlieh (ISTerre)	Access to products
Eastern border of the Tibetan plateau	Tectonics	MP. Doin (ISTerre)	Access to products
Okavango Delta	Hydrology, Tectonics	M. Jolivet (Géosciences Rennes)	Access to products
Ozark aquifer	Hydrology	K. Chanard (IPGP, IGN)	Access to products
Tarim	Tectonics	M. Simoes (IPGP)	Access to products
The Balkan region	Anthropogenic and climatic hazards, Tectonics	M. Métois (LGLTPE)	Access to products
Turkey	Tectonics	R. Jolivet (Laboratoire de Géologie, ENS Paris)	Access to products
Announcement of Opportunity 2022 (data Oc	tober 2014 - end of May 2022)		
Caucasus	Hydrocarbon Reservoir Dynamics, Mud Volcanoes,	F Masson	Access to products
	Tectonics		
Central Chile	Erosion, Tectonics, Volcanism	A Socquet	Access to products
Himalaya and western Tibet	Hydrology, Landslides, Permafrost, Tectonics	MP Doin,C Lasserre,R Jolivet	Access to products
Levant	Hydrology, Tectonics	S Michel	Access to products
Maghreb	Hydrocarbon Reservoir Dynamics, Hydrology,	C Doubre	Access to products
	Landlisdes, Tectonics		
Makran	Tectonics	S Chevrot	Access to products
Mozambique	Tectonics	M de Michele,A Fuenzalida	Access to products
South Mexico	Tectonics, Volcanism	E Pathier	Access to products
Tian Shan	Landslides, Permafrost, Tectonics	M Rizza	Access to products

Total surface exceeds 20 million km² with ascending and descending tracks

France also covered

Resolutions 30m for interferograms

120 or 240m for Time Series

FLATSIM : 2023 Türkiye earthquake

Such massive data and computing time **not possible at laboratories level**

Needs to have High Power Computing, close to the data :

CNES leverages its infrastructure and technical expertise to tackle this challenge, proposing **2 announcements of opportunities for French scientits.** Now **17 projects are involved.**

CNES has largely surpassed the previous limit of about 7 times France (4 million of km2), and still the <u>amount of data</u> generated and stored as well as the <u>computing time</u> <u>remain real</u> <u>issues</u>.

CNES tries to provide the maximum of its capacity to support FLATSIM Service, among other demanding services on its HPC infrastructure, with an evolutive infra (datalake, HPC6G, Datalab/jupyterhub with collaborative sandboxes for software development and high-performance computing)

In FLATSIM project, one can highlight a significant collaboration between engineers from CNES and InSAR scientific experts from CNRS/INSU in the framework of data and service center ForM@ter

Over specific challenge

Needs for interactive tools to help with post-processing of products Needs for low-level tools for spatial/temporal subsetting of products

Thank you

Thanks also to other main contributors to FLATSIM project :

Claude Boniface, Marie-France Larif, Marion Fresne, Clément Schaettel (CNES) Cecile Lasserre (ENS Lyon) Marie-Pierre Doin, Erwan Pathier, Franck Thollard (ISTERRE) Emilie Ostanciaux, Elisabeth Pointal (IPGP)

Back UP slides

News Diary 🛄 Français

FORM@TER POLE DATA AND SERVICES RESOURCES

I - Activités PBS

1 - Suivi des comptes projets

Tableau 2 : Récapitulatif du volume de données des filesets du projets au 2022-03-26

	Fileset	Inodes alloués	Nb Fichiers	Nombre de fichiers créés	Pr_Uze	Quota	Taille	Taille Moyenne/Fichiers	Volume cré
0	ot_flatsim_prod	27 923 043	<mark>19 719 28</mark> 6	<mark>22 145 130</mark>	82.65%	440.0 T	363.644 T	19.337 M	796.872

Tableau 1 : Récapitulatif des jobs soumis sur la période du 2022-02-26 au 2022-03-26

	Compte	Queue	Heures CPU Consommées	Heures CPU Utilisées	Nb Jobs Echec	Nb Jobs Soumis	Nb Jobs Succés	Walltime moye (!
0	Total	Ĺ	160 289.451	54 169.243	6 939	26 <mark>9 04</mark> 8	262 120	2 201.44
1	flatprodexec	qt72h	159 960.218	54 135.546	3 585	230 521	226 947	2 537.40
2	flatprodexec	qt1h	317.89	32.935	3 343	38 490	35 147	32.56
3	flatprodexec	inter	7.83	0.1	0	1	1	28 188.
4	flatdevexec	qt72h	3. <mark>43</mark> 1	0.651	11	22	<mark>1</mark> 1	1 122.90
5	flatdevexec	qt1h	0.82	0.12	0	14	14	21.14

2 - Suivi des queues

Tableau 6 : Récapitulatif du volume de données des filesets du projets au 2022-03-26

	Fileset	Inodes alloués	Nb Fichiers	Nombre de fichiers créés	Pr_Uze	Quota	Taille	Taille Moyenne/Fichiers	Volume cré
0	dl_flatsim	195 753	90 695	21 784	78.97%	250.0 T	197.414 T	2.229 G	45.673

2 - Volume journalier

2 - Volume journalier ¶

