
Niki Loppi, Ph.D.

AI & HPC Solutions Architect, HER/NVAITC, NVIDIA

@Teratec Forum, 15 June, 2022

PHYSICS-INFORMED NEURAL NETWORKS WITH NVIDIA
MODULUS: APPLICATION TO EXTERNAL FLOW
PROBLEMS

2

Introduction: What is Modulus?

Credit to: Mohammad Nabian, Ph.D
Senior Software Engineer, AI-HPC, NVIDIA

+ Modulus Team

3

Introduction
NVIDIA Modulus

NVIDIA Modulus is a neural network framework that
blends the power of physics in the form of governing
partial differential equations (PDEs) with data to build
high-fidelity, parameterized surrogate models with
near-real-time latency.

FPGA Design Optimization

Industrial Digital Twin

Wind Farm Super Resolution

Extreme Weather Prediction

Scalable Performance

Solves larger problems faster by scaling from

single-GPU to multi-node implementations.

AI Toolkit

Offers building blocks for developing
physics ML surrogate models

Near-Real-Time Inference

Provides parameterized system representation

that solves for multiple scenarios in near real time,

trains once offline to infer in real time repeatedly.

Easy to Adopt

Includes APIs for domain experts to work at a higher

level of abstraction. Extensible to new applications

with reference applications serving as starting points.

4

What is Modulus?

q Similar to traditional solvers such as Finite Element, Finite Difference, Finite Volume, and Spectral

solvers, Modulus can solve PDEs.

Modulus is a PDE solver

A comparison between Modulus and commercial solver results for a bracket deflection example. Linear elasticity equations are solved here.

5

What is Modulus?

q With Modulus, professionals in manufacturing and product development can explore different

configurations and scenarios of a model, in near-real time by, changing its parameters, allowing them

to gain deeper insights about the system or product, and to perform efficient design optimization of

their products.

Modulus is a tool for efficient design optimization & design space exploration

Efficient design space exploration of the heat sink of a Field-Programmable Gate Array (FPGA) using Modulus.

6

What is Modulus?

▪ Many applications in science and engineering involve inferring unknown system characteristics given
measured data from sensors or imaging.

▪ By combining data and physics, Modulus can effectively solve inverse problems.

Modulus is a solver for inverse problems

A comparison between Modulus and OpenFOAM results for the flow velocity, pressure and passive scalar concentration fields. Modulus has
inferred the velocity and pressure fields using scattered data from passive scalar concentration.

(Modulus) (Modulus) (Modulus) (Modulus)

7

What is Modulus?

▪ A digital twin is a virtual representation (a true-to-reality simulation of physics) of a real-world physical
asset or system, which is continuously updated via stream of data.

▪ Digital twin predicts the future state the real-world system under varying conditions.

Modulus is a tool for developing digital twins

Virtual representation

Future state realizations

8

What is Modulus?

▪ Modulus contains a variety of APIs for developing data-driven machine learning solutions to
challenging engineering systems, including:

▪Data-driven modeling of physical systems

▪Super resolution of low-fidelity results computed by traditional solvers

Modulus is a tool for developing data-driven solutions to engineering problems

Super-resolution of flow in a wind farm using Modulus.

9

What is Modulus?
Putting it all together

q Modulus is a PDE solver (category I)

q Modulus is a tool for efficient design optimization & design space exploration (category I)

▪ Modulus is a solver for inverse problems (category II)

q Modulus is a tool for developing digital twins (category II)

q Modulus is a tool for developing data-driven solutions to engineering problems (category III)

These are all done by developing deep neural network models in Modulus

that are physics-informed and/or data-informed.

Category I Category II Category III

10

Physics-Informed Neural Network Solver Methodology

11

Neural Network Solver Architecture

• A neural network solver approximates the PDE solution using a feed-forward fully-connected neural network.

• The model is trained by constructing a loss function for how well the network satisfies the PDE and constraints.

• If the network can minimize this loss, then it will in effect, solve the given PDE.

• Unlike the data-driven deep learning models, neural network solvers do not require any training data.

12
NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

MODULUS METHODOLOGY
How Neural Network Solvers Work

13
NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

MODULUS METHODOLOGY
How Neural Network Solvers Work

14
NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

MODULUS METHODOLOGY
How Neural Network Solvers Work

15

NVIDIA Modulus features

16

▪ Modulus includes a collection of PDEs written in

symbolic math using Sympy:
▪ Diffusion

▪ Advection diffusion

▪ Navier Stokes

▪ Zero-equation & 2-equation turbulence models

▪ Linear elasticity

▪ Wave equation

▪ Electromagnetics

▪ User can import these PDEs for their examples.

▪ Alternatively, user can define custom PDEs. Here for
example, Poisson and surface flux equations.

PDE Modules

from sympy import Symbol, Function
define Poisson equation and flux with sympy
class SurfacePoisson(PDES):

name = "SurfacePoisson"

def __init__(self):
represent coordinates & normals in Sympy symbolic form
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
normal_x, normal_y, normal_z = (

Symbol("normal_x"),
Symbol("normal_y"),
Symbol("normal_z"),

)

Represent the solution u as a Sympy function of spatial coordinates
u = Function("u")(x, y, z)

set Poisson & flux equations in Sympy symbolic form
u.diff(x, 2) is second derivative of u w.r.t. x.
self.equations = {}
self.equations["poisson_u"] = u.diff(x, 2) + u.diff(y, 2) + u.diff(z, 2)
self.equations["flux_u"] = (

normal_x * u.diff(x) + normal_y * u.diff(y) + normal_z * u.diff(z)
)

17

▪ Modulus includes a collection of neural network

architectures, including:
▪ Fully connected network

▪ Variations of Fourier feature networks

▪ Sinusoidal Representation network

▪ Deep Galerkin network

▪ Multiplicative filter networks

▪ Hash encoding network

▪ DeepONet

▪ Variations of Fourier neural operators

▪ Super resolution network

▪ Pix2Pix network

▪ User can import these architectures for their examples.

▪ Alternatively, user can define custom architectures.

Neural Network Modules

from modulus.hydra import instantiate_arch

from modulus.key import Key

poisson_net = instantiate_arch(
input_keys=[Key("x"), Key("y"), Key("z")],
output_keys=[Key("u")],
cfg=cfg.arch.fully_connected,

)

18

Geometry Modules
Constructive Solid Geometry (CSG) Module

▪ Allows to create object primitives and perform Boolean operations.

▪ Also computes SDF, its derivatives, and surface normals.

▪ Once the geometry is defined, can create a point cloud for training.

▪ Supported geometry primitives:
▪1D: Line

▪2D: Line, rectangle, circle, triangle, ellipse

▪3D: Plane, box, sphere, cylinder, torus, cone, etc.

▪ Supported Boolean operations:
▪Union

▪Intersection

▪Subtraction

▪ Other functionalities:
▪Transform (translation, rotation, scaling)

▪Repeat

▪Sample point cloud on boundary or interior

from modulus.geometry.csg.csg_3d import Sphere, Box
from modulus.plot_utils.vtk import var_to_polyvtk

define geometry
sphere = Sphere((0, 0, 0), 1.2)
box = Box((-1, -1, -1), (1, 1, 1))
geo = box - sphere
surface_points = geo.sample_boundary(1024 * 256)
var_to_polyvtk(surface_points, "csg_example")

19

Geometry Modules
CSG Module- Geometry Parameterization

from modulus.geometry.csg.csg_3d import Sphere, Box
from modulus.plot_utils.vtk import var_to_polyvtk
from sympy import Symbol

define geometry
radius = Symbol("radius")
radius_range = {radius: (0.8, 1.5)}
sphere = Sphere((0, 0, 0), radius)
box = Box((-1, -1, -1), (1, 1, 1))
geo = box - sphere

for i in range(3):
specific_radius = 0.9 + i * 0.3
surface_points = geo.sample_boundary(

1024 * 256, param_ranges={radius: specific_radius}
)
var_to_polyvtk(surface_points, "csg_parameterized_example_" + str(i))

▪ CSG module allows creation of parameterized

geometries with SymPy

20

Geometry Modules
Tessellated Geometry (TG) Module

▪ Allows to import complex tessellated geometries.

▪ Uses ray tracing to compute SDF and its derivatives. Also computes surface normals.

▪ Once the geometry is imported, creates a point cloud for training.

stl source: https://commons.wikimedia.org/wiki/File:Stanford_Bunny.stl
from modulus.geometry.tessellation.tessellation import Tessellation
from modulus.plot_utils.vtk import var_to_polyvtk

read stl files to make geometry
geo = Tessellation.from_stl("Stanford_Bunny.stl", airtight=True)

interior_points = geo.sample_interior(1024 * 1024, compute_distance_field=True)
var_to_polyvtk(interior_points, "tg_example")

21

▪ In Modulus, different loss terms are defined via constraints.

▪ Modulus contains various types of constraints:
▪ PointwiseBoundaryConstraint

▪ PointwiseInteriorConstraint

▪ IntegralConstraint

▪ IntegralBoundaryConstraint

▪ VariationalConstraint

Constraint Modules

from modulus.continuous.domain.domain import Domain
from modulus.continuous.constraints.constraint import (

PointwiseBoundaryConstraint,
)

make domain
domain = Domain()

sphere surface
surface = PointwiseBoundaryConstraint(

nodes=nodes,
geometry=geo,
outvar={"poisson_u": -18.0 * x * y * z, "flux_u": 0},
batch_size=cfg.batch_size.surface,

)
domain.add_constraint(surface, "surface")

22

from sympy import Symbol, Function

import modulus
from modulus.hydra import to_yaml, instantiate_arch, to_absolute_path
from modulus.hydra.config import ModulusConfig
from modulus.continuous.solvers.solver import Solver
from modulus.continuous.domain.domain import Domain
from modulus.continuous.constraints.constraint import (

PointwiseBoundaryConstraint,
)
from modulus.geometry.tessellation.tessellation import Tessellation
from modulus.key import Key
from modulus.pdes import PDES

define Poisson equation and flux with sympy
class SurfacePoisson(PDES):

name = "SurfacePoisson"

def __init__(self):
represent coordinates & normals in Sympy symbolic form
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
normal_x, normal_y, normal_z = (
Symbol("normal_x"),
Symbol("normal_y"),
Symbol("normal_z"),
)

Represent the solution u as a Sympy function of spatial coordinates
u = Function("u")(x, y, z)

set Poisson & flux equations in Sympy symbolic form
u.diff(x, 2) is second derivative of u w.r.t. x.
self.equations = {}
self.equations["poisson_u"] = u.diff(x, 2) + u.diff(y, 2) + u.diff(z, 2)
self.equations["flux_u"] = (
normal_x * u.diff(x) + normal_y * u.diff(y) + normal_z * u.diff(z)
)

@modulus.main(config_path="conf", config_name="config")
def run(cfg: ModulusConfig) -> None:

print(to_yaml(cfg))

make list of nodes to unroll graph on
sp = SurfacePoisson()
poisson_net = instantiate_arch(
input_keys=[Key("x"), Key("y"), Key("z")],
output_keys=[Key("u")],
cfg=cfg.arch.fully_connected,
)
nodes = sp.make_nodes() + [
poisson_net.make_node(name="poisson_network", jit=cfg.jit)
]

add constraints to solver
make geometry
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
geo = Tessellation.from_stl(to_absolute_path("Stanford_Bunny.stl"), airtight=True)
geo.scale(0.01)

make domain
domain = Domain()

sphere surface
surface = PointwiseBoundaryConstraint(

nodes=nodes,
geometry=geo,
outvar={"poisson_u": -18.0 * x * y * z, "flux_u": 0},
batch_size=cfg.batch_size.surface,

)
domain.add_constraint(surface, "surface")

make solver
slv = Solver(cfg, domain)
start solver
slv.solve()

if __name__ == "__main__":
run()

23

PERFORMANCE
MULTI-GPU/NODE Scalability (TensorFlow version)

24

External flow applications

25

Conjugate heat transfer
Demonstrating the ability of Modulus to solve multi-physics problems involving high Re flows

u (SimNet) u (OpenFOAM) u (Difference)

T (SimNet) T (OpenFOAM) T (Difference)

FPGA heatsink geometry Modulus streamlines and temperature

• Thin fin spacing causes sharp gradients.

• Makes it challenging to learn flow inside heatsink.

• SDF loss weighting & IC planes are used.

• A Zero-Equation turbulence model is used (Re=13k).

26

Design optimization for industrial systems
Demonstrating Modulus ability to perform efficient design space exploration.

Design parameters

Modulus solution for the optimal design

• Modulus solves several simultaneous design configurations much
more efficiently than traditional solvers.

• Unlike a traditional solver, a neural network trains with multiple
design parameters in a single training run.

• Once training is complete, several parameter combinations can
be evaluated using inference as a post-processing step.

• Here, we train a conjugate heat transfer problem over the
Nvidia’s NVSwitch heat sink with 9 fin geometry variables.

• By parameterizing geometry, Modulus accelerates design
optimization by orders of magnitude vs. traditional solvers.

27

2D Virtual Wind Tunnel

From: https://quickersim.com/validation-of-naca0012-airfoil-for-
moderate-values-of-reynolds-numbers/

28

Unsteady problems
Flow over a 2D cylinder with a parameterised Re

29

Unsteady problems

31

TOWARDS HIGH-RE APPLICATIONS
Turbulence modelling

▪ 0-eq mixing length model

▪ 2-eq models with wall-functions

58

TOWARDS HIGH-RE APPLICATIONS
Turbulence modelling

▪ 0-eq mixing length model

▪ 2-eq models with wall-functions

