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‣ From real world data 
‣ From simulations
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A tool for engineers and scientists

Data Valorization

Surrogate models

‣ Predictive Maintenance 
‣ Real time systems
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Flight Data

Maintenance Data

Large industrial datasets require Data Engineering 

Collection, cleaning & labelling, access

Test Data

Data Valorization
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CNN
Literature SoTA

Research Data is often 
underused

Data Valorization

Fieldwork campaign organized by Prof. Martin Wooster (Dept of Geog. University College 
London) in Kruger National Park, 2014 South Africa. 

Work performed at Cerfacs by R. Paugam, N. Cazard, M. Rochoux
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M. Lazzara, M. Chevalier, M. Colombo et al. Aerospace Science and Technology 126 (2022) 107629

Nomenclature

Abbreviations

A/C Aircraft
DoE Design of Experiments
DSE Design Space Exploration
IQs Interesting Quantities
SM Surrogate Model

Acronyms

AE Auto-Encoder
CNN Convolutional Neural Network
FCNN Fully Connected Neural Network
LSTM Long Short-Term Memory

PCA Principal Component Analysis
POD Proper Orthogonal Decomposition

Symbols

xi vector of system parameters for the i-th DoE sample
Yi multivariate time series and dynamical response for 

the i-th DoE sample
zi vector of the reduced manifold space
NT number of time steps
Nx number of system parameters
N y number of IQs time series
Nz dimension of the latent space

Fig. 1. Surrogate modelling for computational efficient estimation of aircraft loads for dynamic landing.

terms of lead time, early optimum design and uncertainty man-
agement, which are top priorities in aerospace industry [11,12].

Despite the increasingly widespread use of data-driven SMs, 
a key problem rarely covered relates to the cases where inputs 
and outputs of a system are high dimensional objects [13–15], 
and of different nature [16,17]: building a surrogate model of a 
highly parametrized nonlinear dynamical system, as the ground 
loads simulation model of a flexible aircraft, still remains an open 
question.

In this paper, SMs are designed to estimate the deterministic 
function f which maps the system parameters x to the parameter-
dependent response Y, i.e. f : RNx → RN y×NT , where Nx repre-
sents the number of input parameters, N y the number of output 
variables, and NT the number of time steps. The time-series Y re-
flects the dynamic response of the system, whose behaviour over 
time depends on an initial state defined by a set of the design 
parameters x (Fig. 1). Thus, the SM should be able to predict a 
multivariate time-series Y ∈ RN y×NT , from a vector of constant 
scalar values x ∈ RNx . Using data-driven techniques to estimate 
the temporal evolution of a dynamical system, either from differ-
ent initial conditions [18] or system parameters [19] has become 
an important topic in the last years, as demonstrated by several 
studies in fluid mechanics applications [8,18,20–25].

Classical data-driven techniques [26] can be severely affected 
by high-dimensionality in two ways: directly, with a huge number 
of training samples, and indirectly by an increasing number of pre-

dictions that must be performed, leading to the well-known curse 
of dimensionality [27] issue.

Dimensionality reduction techniques are often applied to alle-
viate the problem of the high-dimensionality of the system by 
mapping the original problem space to a suitable lower dimen-
sional space. This transformation is employed to construct the SM 
directly in the reduced space, where the input-output mapping can 
be easier to learn, thereby providing a more accurate surrogate 
model.

The combination of linear reduction methods such as Principal 
Component Analysis (PCA) [28], also known as Proper Orthogo-
nal Decomposition (POD) [29], with data-driven machine learning 
models has resulted in relevant approaches for surrogate modelling 
of large-scale dynamical systems. This approach shows its limita-
tion when dealing with nonlinear problems, since PCA relies on 
learning linear projections as transformation of the data. To alle-
viate the linearity constraints, unsupervised learning techniques, 
such as Kernel-PCA [30,31], IsoMap [32] or diffusion maps algo-
rithm [33] are considered as nonlinear dimensionality reduction 
methods. However, besides the “pre-image” problem, they are of-
ten not capable of outperforming PCA [34,35].

A more recent solution is represented by Auto-Encoders (AEs) 
[36]. An AE is a multi-layered neural network, whose “bottle-
neck” configuration forces to identify the essential attributes of 
the input data, leading to an embedded representation in a lower-
dimensional space called “latent space”. The attractive properties 
of AEs are: (i) the reduction mapping is learned jointly with the 
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Lazzara, M. et al. "Surrogate modelling for an aircraft dynamic landing loads simulation 
using an LSTM AutoEncoder-based dimensionality reduction approach." Aerospace Science 
and Technology (2022): 107629.

Lapeyre, C. J. et al. (2019). Reconstruction of Hydraulic Data by Machine Learning. SimHydro 
2019, Nice, France, June 12-14, arXiv:1903.01123.

IMEX-AUNET: DEEP LEARNING PROXY FOR MULTI-PHASE SUBSURFACE FLOW • 111:7

However, in the case of long term prediction (41 time steps) IMEX-
AUNET achieves signi�cantly better global accuracy 4.3% compared
to LSTM-UNET 93%. The last experimentation proves that IMEX-
AUNET is better in the long term prediction compared LSTM-UNET
[Tang et al. 2021].

Metrics (41 time steps) IMEX-AUNET LSTM-UNET
X1 (,0C4A (0CDA0C8>=) 3.1% 72%
X2 (%A4BBDA4) 1.2% 21%
X1 (,0C4A (0CDA0C8>=) + X2 (%A4BBDA4) 4.3% 93%

Table 5. Saturation relative error and Pressure relative error case 41 time
steps

In Figures 5 and 6 we plot the prediction with IMEX-AUNET
(%̂, ˆ(, ), and the corresponding simulation (%, (, ) using the high
�delity simulator AD-GPRS, for three di�erent permeability inputs.
In both cases, pressure and water saturation, we can see that IMEX-
AUNET achieves high accuracy compared to the reference images
generated with AD-GPRS.

Fig. 5. Pressure prediction for the di�erent inputs<1,<2 and<3. IMEX-
AUNET VS The high fidelity simulator AD-GPRS [Zhou 2012]

Benchmark dataset 2. In this section, we apply IMEX-AUNET on
the 3D large scale dataset (Dataset 2) provided by an industrial part-
ner. The aim is to prove that IMEX-AUNET can learn and generalize
on large 3D dataset. In this case, all convolutions in AUNET (Figure
2), are 3D spatial convolutions. To assess quantitatively the quality
of the model prediction, we compute the mean absolute error and
the standard deviation absolute error. These metrics were computed
on the validation dataset. From table 6, we can see that the pres-
sure mean error and standard deviation error are achieving very
low values of (0.73 10A , 0.006). Water Saturation and Gas saturation
are achieving low mean and standard deviation error (0.003, 0.02)
and (0.0007, 0.006). All these metrics indicates the high accuracy

Fig. 6. Water saturation prediction for the di�erent inputs<1,<2 and<3.
IMEX-AUNET VS The high fidelity simulator AD-GPRS [Zhou 2012]

Fig. 7. Dataset 1 and Dataset 2 inputs

of IMEX-AUNET in predicting pressure, water saturation and gas
saturation. In Figures 8, 9 and 10 we plot the model prediction for
pressure, water saturation and gas saturation (%̂, ˆ(, , ˆ(⌧) for a given
layer and for time steps 0, 8, 16, 24. In the middle is the prediction
obtained using the high �delity simulator (P, SW, SG). On the right
is the absolute di�erence between the two approaches. Simulation
time with the high �delity simulator Intersect [schlumberger 2015]
takes 45 minutes. With IMEX-AUNET prediction takes 3 seconds.
Figures 8, 9 and 10, indicate the high quality of IMEX-AUNET com-
pared to the high �delity simulator Intersect.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Yewgat, A. et al. “IMEX-AUNET: Deep Learning proxy for multi-phase subsurface flow”. Submitted to 31st ACM 
International Conference on Information and Knowledge Management, Atlanta, Georgia, USA, Oct. 17-22 2022

Surrogate models
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ML for low-cost models

Good tradeoffs

DL as a RANS surrogate
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Figure 10: 2D prediction result visualization. The first column shows the magnitude of the LBM ground truth.
The second column shows the magnitude of the CNN prediction. The third column shows the magnitude of
the di↵erence between the CNN prediction and LBM results.

formance of up to 20 MLUPS, it is the equivalent of per-
forming 1000 time steps per second at a resolution of 200
⇥ 100 lattice points. Modern LBM solvers that are algo-
rithmically optimized for GPU hardware can achieve 820
MLUPS [31, 21]. Using MLUPS as the performance metric,
we can estimate the run time of each individual LBM exper-
iment we performed if they had been running at the speed
of the state-of-the-art GPU optimized LBM solvers, which
is approximately 2 seconds. The average time cost per in-
stance results for LBM solvers are summarized in Table 3.

Methods LBM CPU LBM GPU
Time cost 82.64s 2.02s
MLUPS 20.11 820

Table 3: Time of LBM solver on CPU and GPU.

The time results of our CNNs are in Table 4. The time cost
measures the average time to generate the CFD given the
geometry shape’s SDF input. Since CNN based surrogate
models could amortize computational overhead per instance
by predicting multiple instance in parallel. We measure the
average time cost for di↵erent batch sizes. Moreover, we
compare the time cost of the shared encoding and separated
encoding3. First, the results show that the average time
cost decreases significantly as the batch size becomes larger.
Second, the separated encoding takes more time than the
shared encoding on di↵erent batch sizes. The prediction
accuracy of shared and separated encoding architectures is
close, but the shared encoding outperforms the separated
encoding in terms of time cost.

We use the shared encoding CNNs to compute the speedup,

3The time cost of separated encoding measures the total
time of sequential prediction of di↵erent CFD components.

CNN batch size 1 10 100
shared encoding 0.0145s 0.0077s 0.0069s
separated encoding 0.0182s 0.0085s 0.0072s

Table 4: Time of CNN models on GPU.

compared to LBM on CPU and GPU. The speedup results
are summarized in Table 5.

Batch Size Speedup (CPU) Speedup (GPU)
1 5699 139
10 10732 262
100 11977 292

Table 5: Speedup results of our CNN surrogate
models compared to LBM for di↵erent batch sizes.

The speedup results show that (1) GPU accelerated CNN
model achieves up to 12K speedup compared to traditional
LBM solvers running on a single CPU core, (2) the CNN
model achieves up to 292 speedup compared to GPU-accelerated
LBM solver, and (3) the speedup increases as batch size in-
creases because the overtime in using GPU is amortized.

6. FUTURE WORK AND CONCLUSION

Even though for many domains, such as architectural de-
sign, low Reynolds number flows [2] are usually su�cient,
we intend to explore higher Reynolds number flows in the
future, to extend the approach to other areas of design op-
timization.
It would also be worthwhile investigating whether we could

use the results from our approximation models as an initial
setup to warm start high-accuracy CFD simulations. Since
the predictions are fairly close representations of the final,

Guo, Xiaoxiao, Wei Li, and Francesco Iorio. "Convolutional neural networks for steady flow 
approximation." Proceedings of the 22nd ACM SIGKDD international conference on 
knowledge discovery and data mining. 2016.

Do we always need CFD?

…
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Hybrid High-Fidelity Simulation

More accurate models

Innovative numerics ‣ Better Preconditioners 
‣ New discretisation schemes



15

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time- 
stepping

Results

End-to-end 
Surrogates

Faster / automatic 
Mesh optimization

Better gradient 
estimation

More accurate 
models

Larger timesteps / 
Less iterations (Poisson)

Inverse problems

More accurate modelsInnovative numerics



16

Fully resolved physicsWhat I can pay for

What’s missing?

Trainable model

Input

Output

Filter

What 
was lost

ML / DL based 
model for on-

the-fly use
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More accurate models
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Xing, Victor, et al. "Generalization Capability of Convolutional 
Neural Networks for Progress Variable Variance and Reaction 
Rate Subgrid-Scale Modeling." Energies 14.16 (2021): 5096.

Dupuy, D. et al. "Data-driven wall modelling for turbulent 
separated flows." Submitted to Physical Review Fluids (2022).

32

Figure 16: A posteriori validation: Mean wall shear stress profile in the flow over a

backward-facing step as predicted by large-eddy simulations with an algebraic wall stress

model and a machine-learning wall model.

Figure 17: A posteriori validation: Mean streamwise component of the wall shear stress

vector in the flow over a backward-facing step as predicted by large-eddy simulations with

an algebraic wall stress model and a machine-learning wall model. The numerical results of

Le et al. [42] are also given for reference.

More accurate models
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Re 6000 3D Von Karman vortex street

Cheng, L., Illarramendi, E. A., Bogopolsky, G., Bauerheim, M., & Cuenot, B. (2021). Using 
neural networks to solve the 2D Poisson equation for electric field computation in plasma fluid 

simulations. arXiv preprint arXiv:2109.13076.

Advection

Pressure 
Correction

xi

xi+1

> fast classical 
solver

> slow iterative 
solver

> neural 
network initial guess

Iterative solver 
converges to 

precision if needed

Figure 19: Example of random_8 source term input in a 4 ⇥ 1 mm2 cylindrical domain.

(a) Neural network (b) Linear system

Figure 20: Comparison of electron density and electric field norm at 1.6 ns for neural network and linear system Poisson
solver. The computational domain has been mirrored from the central axis.

(a) Neural network (b) Linear system

Figure 21: Comparison of electron density and electric field norm at 2.8 ns for neural network and linear system Poisson
solver. The computational domain has been mirrored from the central axis.
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Plasma 
solver

Ajuria Illarramendi, E., Alguacil, A., Bauerheim, M., Misdariis, A., Cuenot, B., & Benazera, E. 
(2020). Towards an hybrid computational strategy based on Deep Learning for incompressible 

flows. In AIAA AVIATION 2020 FORUM (p. 3058).

Innovative numerics

Preconditioners

Incompressible flow solver
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Drozda, L. et al. (2021). Data-driven Taylor-Galerkin finite-element scheme for convection problems. 
The Symbiosis of Deep Learning and Differential Equations - Neurips 2021 Workshop

Locally-tuned 
numerical schemes

Innovative numerics
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HPC for Hybrid Simulation

CPU/GPU architectures

Mesh issues ‣ Interpolation strategies 
‣ Innovative network architectures
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CPU : Navier-Stokes solver

(e.g. AVBP)

GPU : Neural Net

(TensorFlow)

𝐷𝑢
𝐷𝑡

= − ∇𝑝 + 𝜇∇2𝑢 + 𝜚𝐹

Physical fields

Predictions

CPU/GPU architectures
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CNN: Pixels / VoxelsUnstructured mesh

Mesh mismatch => on-the-fly interpolation (CWIPI library)

Mesh issues
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GNN: Same meshUnstructured mesh

Direct use of Mesh Graph Networks can alleviate interpolation
Serhani, A., Xing, V., Dupuy, D., Lapeyre, C., Staffelbach, G. (2022). High-performance hybrid coupling of a CFD solver to deep neural networks. 

33rd Parallel CFD International Conference, May 25-27, Alba, Italy. 

Mesh issues
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Training 

Interdisciplinary 
collaboration

Hybrid simulation: 

AI inside CFD
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Training 

Interdisciplinary 
collaboration

Hybrid simulation: 

AI inside CFD

Hybrid HPC: 

CPUs / GPUs / …?
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