

-

Context

-HPC Strategies with Actran

Testing Cradle on HPC clusters

Summary

-

Model size is increasing

Due to higher fidelity and more complex modeling

Advances in computing

Data source: Wikipedia (wikipedia.org/wiki/Transistor count) Year in which the microchip was first introduced

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

HPC, why?

To tackle large problems

To run computations faster

To use a very large cluster efficiently

HPC Strategies with ACTRAN

The Actran Software Suite

HPC

Definitions

Process parallelism

Multithreading

Computation tasks are distributed to several processes

- Process memory is not shared between the different processes
- Distribute the work of a given process on multiple cores
- Process memory is shared among the different threads

GPU Acceleration

- Use of GPU-specific libraries to accelerate the matrix-matrix multiplications.
- The memory access efficiency is improved by new data structure management.

Adaptive mesh generation

The solver generates coarser meshes to solve lower frequencies for which mesh requirements are lower (because of the larger wavelength)

The mesh is **adapted** to specific **frequency bands** to **optimize** the calculation

Direct Solver parameters

There are a number of direct solver parameters that can help accelerate simulations

Single precision solver

Using Single Precision (SP) instead of double precision
→ potential reduction of the computation resources with a limited impact on the solution accuracy

Single precision: high decrease of computation time and RAM consumption

Performance improvements and new solution strategies of Actran TM for nacelle simulations, Bernard Van Antwerpen et al, 20th AIAA/CEAS Aeroacoustics Conference)

Block Low-Rank (BLR) approximation (MUMPS)

 Block Low-Rank (BLR) is an approximation for the factorization phase that provides performance gains with limited impact on the results

Block Low Rank: high decrease of computation time

10 | hexagonmi.com

Strategies for accelerating Computing Time

Provide results fast and early in the development process

Adaptive mesh generation

The computational mesh is adapted to the frequency, making the computation faster and more efficient

Solver optimization

Various solver settings can be used to reduce calculation time up to 3x

Efficient parallelization

Benchmark cases with ACTRAN

= 0

WARNING HOT AIR EXHAUST

> WARNER WARNER

Collection of benchmark cases

A set of benchmark cases has been created that will allow users to test their HPC capabilities for their appropriate application

Applications

- Electric vehicle exterior radiation
- Drone noise
- Satellite vibration under diffuse sound field
- Engine inlet noise
- Loudspeaker integration up to 20,000 Hz in Actran DGM
- Firewall transmission loss

Exterior radiation of electric vehicle

Exterior Radiation of EV

Sequence	Direct Frequency Response
Solver	MUMPS
Number of DOF	4.4 million
Number of elements	19 million
Loadcases	12
Frequency range	50 to 2000 Hz, 50 Hz step

Methods:

- Multiprocessing with frequency (up to 8 • processes)
- Multithreading (up to 32 threads) •
- Solver parameters: ٠
 - Adaptive meshing
 - **Block Low-Rank**
 - Single precision ٠

Speedup based on parallel processing

Fluid pressure [dB]

0

0

-10

Accuracy comparison

Local Result (virtual microphone) 60 50 40 30 20 10 Default

With 8 parallel processes and 6 threads

Drone noise

Drone noise (Aeroacoustics)		
Sequence	Direct Frequency Response	
Solver	MUMPS	
Source generation	ICFD	
Number of DOF	617,260	
Maximum frequency	5000 Hz	
Number of frequencies	491	
Number of loadcases	24	

Methods:

- Multiprocessing with frequency (up to 48 processes)
- Multithreading (up to 4 threads)
- Solver parameters:
 - Adaptive meshing
 - Single precision

Speedup based on solver parameters Computational time Peak RAM 31.1 31.2 Reduction 77% 101.33 Speed up 163.8 20 ≤ 15 3.94 0.62 1 Process 12 Processes with 4 threads 1 Process 12 Processes with 4 threads 48 Processes with 1 thread + 48 Processes with 1 thread+ Single precision + Adaptive Single precision + Adaptive

120

100 80

60

40 20

0

120

100

80

60

40

20

0

1 thread

ပိ

component component Speedup based on parallel processing MPI Processes parallelism MPI processes parallelism **12 MPI Processes** 120 100 80 60 40 20 ů 0 12 1 4 8 2 4 Number of threads Number of processes **Accuracy comparison** - Single Precision --- Double Precision 70 60 **163x** [8P] 50 ē දී 40 Speedup 1000 2000 3000 4000 5000 Frequency [Hz] With 48 parallel processes and

HEXAGON

Speedup based on parallel processing and GPU acceleration

Loudspeaker in cavity with Actran DGM

Loudspeaker in cavity		
Sequence	Actran DGM	
Cavity volume	2.84 m ³	
Number of DOF	540,694,708	
Number of elements	1,493,037	
Average element order	6.1	
Maximum frequency	20,000 Hz	

Methods:

- Multiprocessing (up to 240 processes)
- GPU Acceleration (up to 4 GPUs)
- Domain parallelism in Actran DGM

Computational Architecture

Actran HPC benchmark summary

Testing HPC Clusters with CRADLE CFD

Hexagon's D&E Computational Fluid Dynamics Solutions

Cradle CFD delivering the best multiphysics-focused CFD in the world with great user experiences

Multi Physics

Productivity Stability & speed of mesher / solver

Visualization

Photorealistic & Immersed (AR/VR)

- Robust, fast & accurate general purpose computational fluid dynamics software
- Unique solutions for electronic cooling and the construction industry

Fast

• Strong capabilities for multi-physics focused CFD co-simulation

Robust

Ease-of-Use

Multiphysics-focused

3D CAD model

Your tool of choice

Cradle | scSTRE4

Structured mesh

Commonly used in:

- Electronics
- Architecture & Civil Engineering
- Application demanding huge models
 - etc.

SCFLOW (supersedes SC/Tetra)

Un-structured mesh

Commonly used in:

- Automotive
- Aerospace
- Machinery
- Application demanding high-accuracy
 - etc.

Cradle | scPOST

Powerful visualization

Testing CRADLE on INTEL XEON Platinum Architecture based

	Name	Specification
Instance	Amazon EC2 c5n.18xlarge	36 physical cores 192GiB
OS	CentOS 7.9	
CPU	INTEL XEON Platinum 8000 series	3.5 GHz
Interconnect	EFA	100 Gbps
10000 	scFLOW parallel Scale CRM 237M Instance: c5n.18xlarge (Co	MASA-CRM mmon Research Model) 00000

Testing CRADLE CFD on Fugaku, ARM-based architecture

- Fukaku is a Petascale supercomputer jointly developed by RIKEN and Fujitsu
- Speed reaching 442 PFLOPS, achieving 1,42 exaFLOPS with mixed Precision HPL-AI
- Ranked 2nd supercomputer in the world according to TOP500, 1st according HPCG (High Performance Conjugate Gradient), and 2nd on HPL-AI Benchmarks

CPU	Fujitsu A64FX
Instruction set architecture	Arm v8.2-A SVE 512 bit
# of computational cores	48 + 2 assistant cores
Memory	HBM2, 32 GiB, 1024 GB/s
Interconnect	Tofu Interconnect D (28 Gbps x 2 lane x 10 port)
# of total nodes	158.976

Fugaku challenge

Large-Scale Analysis

- NASA-CRM
 - Mach number of uniform flow : 0.847
 - Angle of attack: 2.94 degrees
- Number of elements : 237,412,720
- Number of parallels : **192,000**
 - 4,000 nodes
 - 48,000MPI process
 - 4 threads
- Compressible flow
- Density based solver
 - Multicolor Gauss Seidel
- LES transient analysis
 - SGS model: WALE model
- Initial field
 - Steady field by SST k-ω

-1.0

RANS

LES

HEXAGON

Summary

Cradle CFD supports a wide range of computing environments.

- Test on Intel Xeon Based Architecture shows very good scalability
- Test on AWS AMD EPYC based architecture
 - Performance evaluation up to 384 nodes with 24,576 Parallels with very good scalability
 - High speed interconnect EFA is essential for Large scale parallel computations in CFD
- Test on Supercomputer Fugaku, ARM-Based architecture
 - 4,000 nodes and 192,000 MPI Processes were achieved, confirming that Cradle CFD can be operated in a very large scale and highly parallel HPC environment.

Summary

To provide results fast and early in the development process

Intrinsic Software Strategies

Jiggling with Architecture

rentes

A64F

AMD

EPYC

Reference ptive Meshina (AM) AM + Single Precision AM + Block Low-Rank All the above **Calculation time Ihours** 500 Hz

Using adequate parameters related to Software architecture solver parameters or Mesh technics)

Our softwares are tested on latest processors technologies to be able to tune correctly setting for achieving best performance and scalability

Efficient parallelization

Smart strategies for parallelization are necessary

Thank you

Learn more

Hexagon.com

Questions?

-

Virginie.Turc@hexagon.com

Connect with us

in <u>Hexagon MI</u>

-

HexagonMI (1) @HexagonMI (2) @hexagon_mi

