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Presentation outline

* Deep Learning « recent » breakthroughs
* Virtual vs real physical world

* Deep Learning for dynamical process — the interplay of machine
learning and numerical simulation - illustrations

* Learning PDE with NNs
* Solving PDEs with NNs
* Combining Physic models and NNs
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Deep Learning « recent » breakthroughs
* Deep Learning SOTA for different application domains

* Vision
Image classification and object detection Scene segmentation ( Segnet,
(YOLO, Redmon 2016) Badrinarayanan 2017)

* Natural Language Processing

Google Neural Machine Translation 2016 — (Wu et al 2016) Over 100 languages

ALL SYSTEMS GO

Figure 1: Screen shots from five Atari 2600 Games: (Lefi-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider
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What about the real — physical world?
Challenges

* Machine Learning will induce major changes in many industrial
domains
* Automatic vehicles, Healthcare, Security, etc

* What about domains where process models are based on
engineering frameworks developed over many years?
 How to develop the interplay between engineering culture and data
intensive methods?
* Aeronautics, Energy, Manufacturing,Transport,etc.
* Climate, Geophysics, Universe, etc
* |IRT SystemX@Saclay hosts projects on this very topic
* e.g. program IA2 - Intelligence Artificielle et Ingénierie Augmentée
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Focus: Deep Learning for Dynamical Processes -
Coupling Deep Learning and Partial Differential
Equations

Deep Learning for Modeling Physical Processes
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Deep Learning and Dynamical Processes
Motivation

* Modeling complex physical systems: 2 paradigms
* Background knowledge on the physical phenomenon
» Differential equations for dynamic systems/ Numerical Analysis
* Data coming from observations or simulation
e Agnostic machine learning

e Challenges for numerical analysis

* Reduce the cost of simulations through reduced models exploiting the
approximation power of DNNs — model reduction

* Fast development of models when data are available

* Solve problems difficult for classical methods e.g. high dimensions, complex
dynamics

* Integrate data from observations into the modeling process

Challenges for machine learning
e Learn complex dynamics from scratch
e (Can statistics learn physical principles or discover underlying physical laws?
* Incorporate physical knowledge into statistical models
* Benefits from theory and methods from numerical analysis

Deep Learning for Modeling Physical Processes
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Differential equations and NNs: recent trends and
contributions from different communities

* From ODE to NNs
e Similarity of Deep NNs and ODE numerical schemes
* ODE numerical schemes for designing and training NNs
* Training NNs with ODE solvers
e Analyzing properties of NNs, e.g. stability

* From NNs to PDEs (in red examples used for the talk)
* Learning PDEs from data
e Solving PDE with NNs - Reduced models
* Dealing with partially observed data
* Combining physic models and NNs

* Interest from several application domains

Deep Learning for Modeling Physical Processes
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Learning Differential Equations from Data
(Rudy et al. 2017) - Sparse regression

* Collect observations
e Consider a library of terms, e.g. system state, derivatives, ...
* Use sparse linear regression to fit observations on library terms
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Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-Stokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix €, incorporating candidate terms
for the PDE. (1¢) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
202( (2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with

fewer rows. (d) Active terms in % are synthesized into a PDE.



Learning Differential Equations from Data
PDE-NET (Long et al. 2018) PDE-NET 2.0 (Long et al. 2019)

* Inspired from classical NN architectures, e.g. ResNet

* Implement the F dynamics with a specific NN
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Figure |: The schematic diagram of a t-block.
Figure 2: The schematic diagram of the PDE-Net 2.0.

e Each block implements

* Spatial component - Convolution filters
* Learned convolutional filters approximate spatial differential operators

 Temporal component - Skip connections (Euler like)

* Xepr =X+ ()
» Learns cross features between differential operators - learns the explicit

form of the PDE
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Solving PDEs with NNs — Model Reduction
example: Deep Galerkin Method (Sirignano et al. 2018)

* Objective
* Solve large dimensional PDEs
 The form of the PDE is known, solve it when classical methods fail

* Principle
* Consider a parabolic equation with d spatial dimensions
D 4 Lu(t,x) =0, (t,x) € [0, TIx0
u(t =0,x) = uy(x)
u(t,x) =g(t,x) x € 0Q
Approximate u with a Neural Network f(t, x; 8)
Define an appropriate loss function

c I = 2Dy Lp e x0)|

Solve J(f) by sampling in the spatio temporal domain + gradient
descent

f represent the solution over the entire spatio-tempral domain
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Combining PDEs and NNs
Deep Learning for Physical Processes: Incorporating Prior
Scientific Knowledge (de Bezenac et al. 2018)

 Example: Sea Surface Temperature Prediction - SST (< 1 meter
deep) on Atlantic ocean
* Data: satellite imagery (IR)

* Use cases: Weather prediction, anomaly detection, component of
climate models

,J'/
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Combining PDEs and NNs - Deep Learning for Physical
Processes: Incorporating Prior Scientific Knowledge (de
Bezenac et al. 2018)

* Describe transport of I through advection and diffusion

i R

a—+ (W \7)] = DVZ

» [: quantity of interest (Temperature Image)

A . e .
W= A—: motion vector, D diffusion coefficient

 There exists a closed form solution
* Iiae(x) = (kx I)(x —w(x))

* I; A+ (x)can be obtained from I; through a convolution with kernel
k (pdf of a Normal distribution: k(x —w,y) = N(y|x — w, 2DAt))

* If we knew the motion vector w and the diffusion coefficient D we could
calculate Iz (x) from I
e wand D unknown
e ->learnwandD

Deep Learning for Modeling Physical Processes
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Combining PDEs and NNs - Deep Learning for Physical
Processes: Incorporating Prior Scientific Knowledge (de
Bezenac et al. 2018)

* Prediction Model: Objective: predict I;,1 from past I;, I;_+, ...2

components: Warping Scheme
Implements discretized
A-D solution

Convolution- Deconvolution NN for
estimating motion vector w;

Supervision

Past Images
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Color: orientation

Intensity: flow * Endto End learning using only I supervision
intensit . : L

nEensity * Stochastic gradient.optimization
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Combining PDEs and NNs
Aphynity: combine NN and differential solvers (Le Guen et
al. 2020)

* Context

e Data driven models are insufficient to predict complex physical
dynamics, e.g. extrapolating is still an open problem

* Physical models extrapolate well if they adequately describe the
dynamics

* But: backround may not be available or only partially, unknown
external factors,...

* Objective
* Hyp: Incomplete background knowledge is available, e.g. PDE
* Provide a principled framework to make model based and data
based framework cooperate
 |dentify correctly the physical parameters

 The NN component should learn to describe the information that
cannot be captured by the physics,

Deep Learning for Modeling Physical Processes
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Aphynity: combine NN and differential solvers (Le
Guen et al. 2020)

* We provide
* A principled framework for the decomposition

* Under mild hypothesis it comes with existence and unicity of the
solution

* Guaranties that the parameters of the physical system will be
identified while approximating as best as possible the dynamics

arg min || Fa | APHYNITY training
— % _,‘ Physical dhistikicd
. model -D s.t. VX €D, Vt, l:” (Fp + Fa)(X4)
(Xt)e=1.1

SolveODE(XO,F +F,, (1:T))

/
SRS NN

1 XT
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Aphynity: combine NN and differential solvers (Le

Guen et al. 2020) - Examples

e Reaction Diffusion equations
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(a) Param PDE (a, b), diffusion-only (b) APHYNITY Param PDE (a, b) (¢) Ground truth simulation

Figure 2: Comparison of predictions of two components u (top) and » (bottom) of the reaction-
diffusion system. Note that ¢+ = 4 is largely beyond the dataset horizon (f = 2.5).

. Damped wave equation

1 V 1 ‘f

(a) Neural ODE (b) APHYNITY Param PDE (c) (¢) Ground truth simulation

Figure 3: Comparison between the prediction of APHYNITY when ¢ is estimated and Neural ODE
for the damped wave equation. Note that ¢ + 32, last column for (a, b, c) is already beyond the
training time horizon (t + 25), showing the consistency of APHYNITY method.
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Conclusion

e Several emerging topics at the crossroad of NNs and numerical
modeling systems

* Open several perspectives both for statistical machine learning
and for physical modeling

* Cross fertilization of model based approaches and data driven
approaches

* New models for describing complex dynamics exploiting the large
amounts of observation data

* New perspectives for modeling/ training neural networks
e e.g. as dynamical systems

Deep Learning for Modeling Physical Processes
— Forum Terratec - Al in scientific computing
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