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Industrial context

Good predictive capability expected.

Complete mesh size: ' 3 million elements.

=⇒ Explicit simulations performed on the whole model.

Stable time step: ' 1 µs.

10 hours to simulate ' 130ms on 96 CPUs.

=⇒ Excessive computational cost.

≥ 90% of the geometry meshed with linear Reissner-Mindlin shell
elements.

Figure: Model size evolution
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Industrial context

Geometry has proved to be very significant.
Need to refine some components.

=⇒ Stable time step greatly penalized.
Accurate and smooth geometry preferred for contact problems.
Large time used for preparing and meshing parts.
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Figure: Estimation of relative time costs for model generation and analysis
process
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Industrial context

=⇒ IsoGeometric Analysis for automobile crashworthiness.

Parametrized CAD geometry for optimisation process.

Analysis and Design share the same model.

Higher regularity between elements within a patch.

Figure: Numerical simulation process in isogeometric analysis.
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Numerical locking

Fully integrated low order elements, based on Timoshenko/Mindlin
hypothesis, present poor performances with thin beams, plates and
shells.
Transverse shear and membrane locking appear.
Classical Lagrange-based reduced and selective integration rules do
not remove these pathologies.

=⇒ Need to define B-Spline/NURBS-based integration schemes.
Framework:

Multi-patch problems with uniform regularity within each patch.
Quadratic and cubic polynomials, regularity r from 0 to p − 1.

C0

Cr

Figure: Multi-patch problems.
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Pure bending problem

Thick curved beam of length L and radius R clamped at one end.

Moment of inertia for a rectangular section: I = bh3

12 .

Distributed loading moment proportional to the
bending stiffness:

m(s) = EI
( π

2L

)2

sin
( π

2L
s
)
.

=⇒ Exact solution known, depends only of L and R:

un(s) =
2L
π

1− ( 2L
πR )2

(
cos

( s

R

)
− cos

( π
2L

s
))

.

Exact membrane and shear strains are zero.

Severe test for membrane and shear locking.
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Membrane and transverse shear locking

One element with B-Splines of degree p from 1 to 5.

Shear locking for slenderness ratio L/h� 1 and membrane locking
for L/h� R/L.

Both shear and membrane locking appear for all degrees p.
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Figure: One element curved thick beam: rotation relative error in L2 norm.
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Transverse shear locking

Different effects on convergence according to the couple (p,r).
Degree 1: no pre-asymptotic convergence.
Degree 2: slow pre-asymptotic convergence when C 0 and no
pre-asymptotic convergence with few elements when C 1.
Spurious constraints strengthened by the high regularity.

=⇒ Excessive bending stiffeness of the structure.
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Figure: Rotation relative error in L2 norm for a straight Timoshenko beam.
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Mathematical framework

Based on the work in FEA of [Prathap,93].

Field-consistency paradigm in thick structural elements.

Transverse shear strain in straight beam:

γs(s) = w,s(s)− θ(s).

In the limit of an infinitely thin beam, the shear strain energy must
vanish.

=⇒ Different physical and spurious constraints are obtained according to
the couple (p,r).

Mathematical induction is performed adding elements one-by-one.

New unknowns and conditions are numbered.

An over-constrained linear system leads to numerical locking
whereas an under-constrained system produces zero energy modes.
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1D B-Spline reduced quadrature rules

Optimal selective reduced integration schemes adapted to high
regularity basis functions.

The higher the regularity is, the fewer Gauss points are needed.

Shear and membrane locking are completely removed.

Improved accuracy of curved beam B-Spline elements.
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Figure: Rotation relative error in L2 norm with full and selective reduced
integrations.
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Pure bending problem

Same behaviours as with beams.

High regularity wanted for more accurate results with fewer control
points.

Need to unlock B-Splines especially when C p−1 regularity.

Possibility to extend integration rules from beams to plates and
shells.
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2D B-Spline reduced quadrature rules

Uni-dimensional B-Spline-based reduced quadrature rules extended
to bi-dimensional rules by tensor product.

The high regularity lowers the required number of Gauss points.

Hourglass modes are suppressed using additional quadrature points
in boundary elements, where the control points accumulate.
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Figure: B-Spline selective integration quadrature rules and central deflection.
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2D B-Spline reduced quadrature rules

Resulting under-integrated elements are free from transverse shear
locking.
Numerical solutions independent of the thickness.
Improved accuracy of plate isogeometric elements.
No spurious zero energy modes.
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Figure: Central deflection of a simply supported plate (L/h = 103, 105).
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Shell model

Reissner-Mindlin shell model obtained from
a degenerated three-dimensional model.

First-order kinematic description through
the thickness with transverse shear.

Exact geometry of the shell defined by

x(ξ) =
nm∑
A=1

RA(ξ, η)XA +
h

2
ζn(ξ, η).

Interpolated displacements described by

u(ξ) =
nm∑
A=1

RA

(
UA +

h

2
ζθA ∧ n

)
.
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Characterization of the normal

Several possibilities:
1 Exact normal:

n =
x,ξ ∧ x,η

||x,ξ ∧ x,η||2
.

2 Collocated normal:

n = nA ∀A ∈ [|1, nm|].
a. nA defined by the orthogonal projection of the associated control

point XA onto the mid-surface of the shell,
b. nA defined by a uniform distribution of the shell normals in the

parametric space,
c. nA defined at the Greville abscissae in the parametric space.

Exact normal formulation is incompatible with reduced integration.

Collocation at Greville abscissae results in good compromise between
accuracy and computation time.
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Shell obstacle course problems

Evaluate time efficiency and accuracy of the proposed
under-integrated elements.

Linear elasticity benchmark problems.

Bending dominated problems: transverse shear and membrane
locking.

(a) Scordelis-Lo roof (b) Pinched cylinder (c) Pinched hemisphere

Figure: The shell obstacle course: problem descriptions and data.
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Accuracy
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Figure: Shell obstacle course: displacement convergence
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Time efficiency
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Figure: Shell obstacle course: displacement convergence
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Total number of Gauss points

Lagrange-based quadrature:

nbending
GP =

(
e
(⌈

2p+1
2

⌉))2
and nshear

GP =
(
e
(⌈

2p+1
2

⌉
− 1

))2
.

B-Spline-based quadrature:

nbending
GP = nshear

GP =
(
e
(⌈

2p+1
2

⌉
− 1− r

)
+ 2r

)2
.

Computational effort depends on the difference p − r when
performing B-Spline-based reduced integration.
Speed up factor greater than 5 (resp. 6) is reached with the
under-integrated quadratic (resp. cubic) C p−1 elements.
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Figure: Computation time for the pinched cylinder problem.
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Benchmark problems

Solid-shell elements with one quadratic element in the thickness.

Geometric non-linear elasticity benchmark problems.

Bi-variate B-Spline-based quadrature rules applied.

(a) Pinched hemisphere (b) Stretched cylinder

Figure: Geometric non-linear analysis of shells: problem descriptions and data.
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Accuracy and time efficiency

Bi-quadratic C 1 shape functions in the in-plane directions.

Improved accuracy and time efficiency.

Speed up factor of approximately 3.
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(b) Stretched cylinder

Figure: Displacement convergence with Total Lagrangian Formulation
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Conclusions

Severe numerical locking appear in quadratic and cubic C p−1

elements.

=⇒ Reduced integration to improve the performances of IG elements.

Classical reduced/selective quadrature rules remove numerical
locking in C 0 elements only.

Mathematical framework to define B-Spline-based reduced 1D
quadrature rules.

Extension to 2D quadrature rules by tensor product.

=⇒ Efficient thick shell elements obtained as in FEA.

Improved accuracy and time efficiency.

Computational cost depends on the difference p − r .
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